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Abstract-Transport calculations are given for laminar boundary-layer, buoyancy-induced flow adjacent to 
heated or cooled horizontal surfaces submerged in a porous medium saturated with cold water wherein a 
density extremum may arise. The results demonstrate for the first time the existence of ‘inner region of normal 
velocity component reversal’. This is also shown to arise for all natural convection flows adjacent to horizontal 
surfaces. It is noted that the Prandtl number Pr = v/G(, does not appear as an additional parameter in this 
formulation. A temperature parameter R expresses the relation between imposed temperatures t, and t, and 
the extremum temperature t,. Calculations are made for both the isothermal and uniform flux surface 
conditions, over a wide range of R,including buoyancy force reversal conditions. For an isothermal surface, the 
transport results for 0 < R < 0.08 and 0.288 < R < 0.5 include buoyancy force reversal regions. The 
characteristics of these two subregions are found to be different. Detailed tabulations of transport parameters 
are included for both the isothermal and uniform flux surface conditions. These new results are compared with 

those resulting from the conventional Boussinesq buoyancy force approximation. 

1. INTRODUCTION 

PURE WATER at 1 atm has a density extremum at about 
4°C. This is due to a balance of the competing density- 
controlling mechanism of hydrogen bonding and 
molecular thermal motion. This anomalous density 
behavior has far reaching effects in buoyancy-driven 
transport. It also complicates analysis since the second 
Boussinesq approximation, that the fluid density p 
varies linearly with temperature, can no longer be 
applied. 

The transport complexity will be briefly reviewed 
here first for the flow adjacent to a vertical surface. 
Consider, for example, a vertical surface at a uniform 
temperature &, = 8”C, in a quiescent pure water 
ambient t, = 2°C. Near the surface, the fluid is less 
dense than the ambient and the buoyancy force is 
upward. However, since extremum occurs at about 
4”C, the fluid in the outer portion of the thermal 
transport region is more dense than the ambient. 
Consequently, the buoyancy force then is downward. 
Thus, an inside buoyancy force reversal occurs across 
the thermal diffusion region. An inside flow reversal 
may result. That is, inner flow may be up, with the outer 
flow down. With changing values oft, and t,, inversion 
may arise. That is, the direction of net mass flow may 
reverse. 

In the past, a very compact relation for density- 
temperature dependence in cold water was not 
available. A recent equation given in ref. [l] contains 35 
temperature terms; another recent and vastly simpler 
equation [2] is of comparable accuracy. The latter 
expression contains only one temperature term. This 
simplicity of the temperature dependence leads to 
similarity solutions of boundary-layer flows. 

There are many recent studies of buoyancy-driven 

motion in cold water, using this new density equation. 
Transport from isothermal and constant heat flux 
horizontal surfaces was calculated in ref. [3]. Qureshi 
and Gebhart [4] computed similarity solutions for the 
flow adjacent to a vertical, uniform heat flux surface in 
ambient water at t,. Carey et al. [S] considered 
buoyancy-induced flow adjacent to a vertical, 
isothermal surface in pure water ambient. Mollendorf 
et al. [6] treated axisymmetric and plane plume flow in 
water at t,. The perturbation analysis of Gebhart et al. 
[7] extended the results of refs. [4] and [6] to ambient 
water temperatures not equal to t,. El-Henawy et al. 

[8] found multiple steady-state solutions for vertical, 
buoyancy-induced flow conditions in cold, pure water. 

In recent years, there has been a growing interest in 

buoyancy-induced flow in fluid-saturated, porous 
media due to concerns about geothermal deposits, 
energy storage and insulation. Analysis is simpler than 
that for Newtonian fluid transport and the permissible 
number of boundary conditions is less. Formulation 
usually, therefore, allows slip at bounding surfaces, 
where a no-slip condition is taken for Newtonian fluids. 

There has been considerable analysis and experiment 

concerning buoyant transport in porous media. Cheng 
and his co-workers [9-111 determined a series of 
similarity solutions. In this analysis, the Boussinesq 
approximation, that the fluid density p varies linearly 
with temperature, was invoked. Sun et al. [12] applied 
linear stability analysis using a cubic polynomial 
density-temperature relationship. Yen [13] measured 
the effect of a density inversion on free convective heat 
transfer in a porous layer heated from below. Ramilison 
and Gebhart [14] examined the possible similarity 
solutions for vertical, buoyancy-induced flow in a 
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NOMENCLATURE 

a, b, c, a’ defined in equations (9), (1 l), (12), 
(13), respectively 

b,, cX, d, denotes differentiation with respect 

B 

4, 
CP 
f 

f 
G 
Gr 
9 

1, 
K 
k 

Ra, 
s 
t 

k 
kr 
rir 
M 
N 

P 

Ph 
PII3 

PE’ 
P 
Pr 

Q 
4 
R 

to x 

buoyancy force, g(p, -p) 
normal component of buoyancy force 

local Rayleigh number, equation (21) 

specific heat 

salinity 

similarity streamfunction variable defined 
in equation (12) 
denotes fluid in equation (3) 

temperature 

modified Grashof number, 5(Gr,/5)“’ 
Grashof number 
acceleration of gravity 
total buoyancy force, equation (26) 
permeability of porous medium 
effective thermal conductivity of saturated 
porous medium 
thermal conductivity of solid 
thermal conductivity of fluid 
mass flow per unit width of surface 
local momentum flux 
constant in d(x) = Nx” 
pressure 
hydrostatic pressure 
motion pressure 
ambient pressure 
non-dimensional pressure, equation (13) 
Prandtl number 
total local convected energy 
exponent in density equation (4) 
parameter defined in equation (10) 

4m 

to 
t , 
U 

V 
V 
W 
X 

Y 

temperature at which maximum density 
occurs for a given salinity and pressure 
surface temperature 
ambient temperature 
Darcy velocity in x-direction 
Darcy velocity in y-direction 
vector velocity 
local buoyancy force defined in equation (8) 
coordinate parallel to the surface 
coordinate vertical to the surface. 

Greek symbols 
coefficient in the density equation (4) 
thermal diffusivity ratio of matrix 
conductivity to fluid heat capacity 
coefficient of thermal expansion 
boundary-layer thickness 
non-dimensional distance in boundary 
region 
the position of r) where vertical component 
velocity changes from outward to inward 
value of q at the edge of boundary region 
dynamic viscosity 
kinematic viscosity 
density 
maximum density 
density of ambient fluid 
reference quantity of density 
normalized temperature, (t, - t,)/(t, - tm) 
streamfunction 
porosity. 

Superscript 
’ denotes differentiation with respect to n. 

porous medium saturated with cold water both for 
d(x) = to-t, in power law or exponential relation 
with respect to x. More recently, Gebhart et al. 
[15] obtained multiple steady-state solutions for the 
same kind of transient using two different numerical 
codes, i.e. COLSYS and BOUNDS. 

This study analyzes developing buoyancy-induced 
transport adjacent to an extensive heated or cooled 
horizontal surface embedded in a porous medium 
saturated with cold water (see Fig. 1). There is no 
buoyancy force component in the principal flow 
direction. The flow is instead driven indirectly by a 
buoyancy-generated pressure field. For B = B, away 
from the surface, low pressure, with respect top,, arises 
in the temperature region next to the surface. Ifnegative 
pressure levels arise they will result in a negative 
pressure gradient in the increasing x-direction. A 
developing flow will thus be induced downstream. This 
is an ‘indirect drive’, since buoyancy indirectly drives 

(0) 

(b) 

FIG. 1. Coordinate systems for the two transport conditions, 
buoyancy B upward and downward. (a) Buoyancy effect 

largely upward ; (b) buoyancy effect largely downward. 
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the flow. It produces a pressure field which, in turn, 
drives a relatively weak flow. Further downstream, 
thermal instability eventually arises, due to unstable 
stratification. Longitudinal vortices then may arise to 
separate the flow. Such a mechanism is discussed by 
Pera and Gebhart [ 16). 

The following conventional assumptions simplify 
the analysis : 

1. 

2. 

3. 
4. 
5. 
6. 

Flow is sufficiently slow that the convecting fluid 
and the porous matrix are in local thermo- 
dynamic equilibrium. 
The physical properties of the fluid and porous 
matrix are uniform and isotropic. 
Fluid remains in a single phase. 
It is a fully saturated porous medium. 
Darcy’s law is valid. 
Density is assumed constant except in the 
buoyancy force term. 

7. Dufor and Sortt effects are negligible. 

The density state equation used here is very accurate 
for both pure and saline water to a pressure level of 1000 
bars, to 2O”C, and to 40”/,, salinity. The governing 
equations for steady flow are : 

v-v=0 (1) 

k 
v.Vt =(-----&v=t (3) 

P = P&, PI c 1 - a, P) It - 4&, P)14@*p)l (4) 

where v is the Darcy velocity, p and cp are the viscosity 
and specific heat of the convective fluid and pr is a 
reference density, which will be pm in equation (4). Also, 
K and k are, respectively, the permeability and effective 
thermal conductivity of the saturated porous medium, 
p and g are the fluid pressure and gravitational 
acceleration, s is the salinity level of the water. 

It is noted that the first Boussinesq approximation, 
Ap/p << 1, is employed in writing the continuity 
equation (1). The forms and values of the functions 9, CI, 
pm and t, are given in full detail in ref. [2]. 

2. ANALYSIS 

The analysis treats a semi-infinite, horizontal, 
impermeable surface embedded in a saturated porous 
medium. No salinity diffusion is considered. The 
buoyancy arises only due to thermal gradients. The 
equations for steady, two-dimensional plane flow, with 
constant properties p and K, from equations (1x3) are 
then continuity, Darcy’s law and energy, as follows : 

au+!& 
ax ay 

u=-EaPm 
P ax (64 

K 
u=- 2!!d!Lpg 

a~ ay 1 (6b) 
P 

at at K a2t a2t 
u~+“dy=o(dy2=~l~~ (64 

In Fig. 1, on-flow is on the upper side of the surface for 
an upward buoyancy force B and on the bottom side for 
B downwards. In equation (6~) CQ results from the 
matrix conductivity k = k,( 1 -E) + kf where k,, k, and E 
represent thermal conductivity of solid, fluid and 
porosity, respectively. This form arose in the evaluation 
by Katto and Masuoka [17]. The static pressure p is 
taken as the sum of the local hydrostatic pressure p,, and 
a motion pressure pm and u and u are the downstream 
and normal components of Darcy velocity. Equation 
(7) below results from an order ofmagnitude analysis as 
the boundary-layer approximation. 

o=; -$+g(,m-p) [ 1 
(7) 

The buoyancy force is determined from the density 
relation, equation (4). In the present analysis, for pure 
water at 1 bar, q(O, 1) = 1.894816 

POX-P = ~Pm(l~-~mlq-l~,--*14) 

= ~~,l~~--t,lq~l~-~14-I~Iq~ 

= ap,lt,--t,lqW (8) 

where t, is the surface temperature, t, is the ambient 
temperature and W(x, y) is the local buoyancy force. 
Taking 

#l(q) = -E$ = !I& 
0 m 

Gal--tm R=-. 
to--t, 

A transformation is sought in terms of a similarity 
variable ~(x, y). The usual streamfunction Jl(x, y) and 
f(q) are defined following the notation of Gebhart [18] 

tl(x, Y) = YW (11) 

4(x, Y) = a,c(x)f(?) (12) 

Pm = 4xmd (13) 

where u = $,,, u = -I++, and a, b, c are transformation 
functions to be determined. The transformation is 
substituted into (5)-(7) to determine the a(x), b(x), c(x) 
and d(x), for which similarity will result. The resulting 
equations in J 4 and P are 

f'+;g ,,ffgP=O (14) 

(15) 

(16) 

For similarity of results, all of the above coefficients 
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in (14)-(16) must be constants or functions of tf only. 
This consideration leads to the following values of a(x), 
b(x), c&f and d(x). 

a(x) = g ff *(Rax}2’3 (I71 

where 

h(x) = Ra:13/x 

c(x) = (Ray3 

d(x) = Nx” 

Note that Ra, is always positive. In terms off, P and b, 
the differenti~ equations and boundary conditions 
become 

p’ = W = ~~~-R~e-~R~q] (23) 

f(0) = &co) = (p(O)- 1 = &co) = 0. (25) 
Note that the above formulation is for flow over the 
upper side of the surface. For Aow on the bottom side of 
the surface, P = - W The totaI buoyancy force out 
across the boundary region is 

I==/; Wdq=[; ~l~-R14-lRl~ dg. (26) 

This quantity is effective in indicating the net effect of 
buoyancy in the flow and the flow vigor. In the results in 
Table 1, I, > 0 is associated with the flow on the upper 
side of the surface and vice versa. Note that Pr = vj~xr 

Table I. Calculated values for the isothermal surface 
condition, n = 0, for q = q(0, 1) 

-16 7.98224 - 1.22265 -12.82716 12.82716 
-8 6.50388 -0.99867 -8.58169 8.58169 
-4 5.30932 -0.81915 -5.80418 5.80418 
-2 4.34997 -0.67717 -4.00481 4.0048 1 
-1 3.58840 -0.56753 - 2.85906 2.85906 
-0.5 2.99631 -0.48613 - 2.14937 2.14937 

0 1.73084 -0.34181 - 1.21021 1.21021 
0.05 1.33584 -0.31326 - 1‘08394 1.08394 
0.08 0.82297 -0.29031 - 1.00472 1 .Oo472 
0.288 2.09427 -0.16919 0.10788 0.10788 
0.301 2.13112 -0.20009 -0.02388 -0.02388 
0.4 2.40963 - 0.29639 -0.51306 -0.51306 
0.5 2.6338 1 -0.34915 -0.83812 -0.83812 
1 3.34983 -0.48926 - 1.91938 - 1.91938 
2 4.21613 - 0.62974 - 3.30297 - 3.30297 
4 5.22711 -0.79009 - 5.27496 - 5.27496 
S 6.45335 - 0.98082 -8.18184 -S.18184 

16 7.95117 -12116S - 12.52490 - 12.52490 

does not appear explicitly in the formation, equation 
(221, (23) and (24). 

Theroleoftemperatureparameter~is~u~~incold 
water transport. It expresses the effect of the extremum 
behavior on the resulting Bow. It is an indicator of the 
relation between t, and t, and the extremum 
temperature, E,. It also indicates the nature of the 
buoyancy force 8, or W For large [RI, the imposed 
system temperatures are far from the extremum 
condition. On the other hand, consider t, = 0°C. Then 
R = I - t,jt,. For R = 0, t, = t, and the buoyancy 
force is upward over the whole thermal layer, 
configuration (a) in Fig. 1. However, for R = 1, t, = t,. 
The buoyancy force is then downwards, configuration 
(b). In fact, for R G 0, W 2 0 everywhere and the on- 
flow is on the upper side of a surface. For R & 0.5, 

W < 0 everywhere and on-flow is on the bottom side of 
a surface. 

In the region 0 < R e 0.5, W changes sign across the 
boundary region. As a result, it is not i~tiaIly known 
what subrange of R results in a deveIoping boundary- 
layer flow, either above or below the surface. The 
computed results, in Table 1, indicate that I, > 0 
approaches zero as R increases from R = 0. As R 
decreases from R = l/2, I, < 0 again approaches zero. 
These are the upper and lower side flows, respectively, 
in Fig. 1. 

3. REASONABLE SdLWTlONS 

The following basic transport quantities are 
calculated in terms of similarity variables to determine 
the imposed temperature conditions, d(x) = Nx”, 
under which physically realistic solutions result. 

s 

m 
Q(x) = puc,(t- t,) dy cc cd 

0 

m s 1 Wdq (30) 
11 

M= pu2 dy = pa+% 
s 

,” (f’)’ drj at x”p (32) 
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For a heated or cooled surface, the total local 
convected energy IQ(x)/ should increase or at least 
remain constant downstream, as for a line source or 
sink at the leading edge. Thus, from{27), n & - f/(q + 3). 
From (29), the condition S(0) = 0 leads to n < 2/q. 

Since there is no buoyancy force component in the 
direction of flow, the flow is completely driven by a 
pressure field. That is, the favorable pressuregradient in 
the x-direction, &,,,fax < 0 is the only driving force. 
Consider equation (30) for R < 0, Wand I, > 0. With 
the restriction of - l/(q + 3) < n < 2/q, it can be shown 
that the quantity in the bracket of (30) is positive, and 
since Ra, > 0. Therefore, apJax < 0. Thus, on-flow 
arises above the upper side of the surface. On the other 
hand, I, < 0 for R 2 0.5, and developing flow arises on 
the bottom side. 

4. PARTICULAR TRANSPORT CIRCUMSTANCES 

There are many important applications to consider. 
Solutions are given here for only two kinds of 
temperature conditions. One is an isothermal surface 
condition in an unstratified ambient medium. Thus R is 
a constant, n = 0, and the equations are 

+;riP’++0 (34) 

#“+$#+O (35) 

p’= &#-Ri*-lRl~] 

tlow on the upper side of surface f36a) 

= -[fq%-RI*--1Rl’l-j 

flow on the bottom side of surface (36b) 

f(0) = l-$(O) = 4(co) = P(W) = 0. (37) 

The other condition is that of the bounding surface 
dissipating a uniform heat flux q”. The Q(x) is constant 
and n = 2/fq f 3) from (27). Since t, varies with x, so 
would R in equation (lo), unless t, = t,. Then 
similarity would be lost in equation (23). Therefore, the 
condition R = 0, or L, = t, is chosen. The resulting 
formulation is : 

(q-f-3)f’-2rP+Z(q+l)P = 0 (38) 

(~~3)~+(q~l~~~-2~# = 0 (39) 

p’ = #” (40) 

f(0) = i-&O) = #co) = P(W) = 0. (41) 

Some of the particular transport characteristics with 
an isothermal surface condition are examined next. 
Both u and ~p~~~x are seen in equations (28) and (30) to 
be singular at the leading edge, x = 0. Tbe boundary 
region mass flow, per unit width of surface, F& is 
proportjonal to x 1/3. The boundary-layer thickness 
S(x) varies as x a3 . However, local momentum flux M is 
independent ofx. It is recalled that for both vertical and 
horizonta1 surfaces embedded in either a Newtonian 

fluid or porous medium ambient, the normal velocity 
component o is singular at the leading edge. For 
example, for a horizontal surface in a Newtonian 
ambient, -u = fG,K$(3f- 2f’& the ~~ptotic solu- 
tion of f ‘ can be shown to approach zero exponen- 
tially at large ye. However, --t‘ ;t f(rn)~‘“~-~~‘~ 
Thus, for n = 0, o is singular at the leading edge. 

Cheng [lo] has discarded the possibility of the 
existence of buoyancy-induced, boundary-layer flow 
adjacent to an ~sothermai surface embedded in a porous 
medium. It was argued that the singularity in the 
tangential velocity at the leading edge was in- 
admissably unre~onable. However, the momentum 
flux M is bounded in (32). Therefore, the singularity of 
ufn, y) at the leading edge is not obviously worse than 
that in u(x, r) there. 

A consequence of ufx, y) being unbounded at x = 0 is 
that the downstream flow behavior, although quite 
reasonable, is unusual and very different from most 
boundary region transport. This is the only 
configuration in which ufx, y) is unbounded at the 
leading edge, for both horizontai and vertical surfaces 
embedded in either a Newtonian fluid or a saturated, 
porous medium, Finally, the boundary-layer ap- 
proximation assumes that the gradient in physical 
quantities are small in the downstream of x-direction, 
when compared with those withy. It may be shown that 
u/v = O(Ra,) Ii3 Thus the solutions are more accuracte . 
at increasing Ra,, as is usually found in boundary 
region flows. 

5. NUMERICAL RESULTS FOR AN 

ISOTHERMAL SURFACE CONDITION 

Solutions for the isothermal and uniform heat flux 
surface conditions are presented separately. Isothermal 
results are considered first. Equations (34H36) are a 
fourth-order system. The accompan~n~ four boun- 
dary conditions are designated at two locations, at the 
surface, q = 0, and outside the boundary region, rf + co. 
For computations, q must be taken to be finite. Then 
(34)-(36), with (37), were solved by a predictor- 
corrector shooting method. The local step size is 
automatically adjusted to maintain a prescribed 
accuracy, while integrating from q = 0 to a chosen qm. 
Initial guesses for q%‘(O) and P(0) are successively refined 
to satisfy the distant boundary conditions. Eventual 
values of tfif 33 j and Pfcc) differ from zero by less than 
10W8. In order to ensure convergence of the values of 
cfi”f0) f(cc), P(0) and I, to lo-‘, the value of q, was 
sometimes increased to as much as 55. 

Computations weremade over a large range of R and 
into the range of buoyancy force reversal, 0 < R < t/2, 
from both sides, as far as possible. A gap of non- 
convergence remained. It was more and more difRcult 
to obtain a convergence further in from each edge 
R = 0 and l/2. Flow reversal near the surface first 
occurred for R decreasing, at around 0.30. The 
remaining gap was found to be 0.08 < R < 0.288. 

The calculated values of S(a), #‘(O), P(0) and I,, for 
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6 

5 
Boussmesq. R=l.-I. 2.-2,8.-B 

FIG. 2. Distribution of the tangential component of velocity, f’, for selected values of R outside the buoyancy 
reversal region. The solid lines are for flow on the upper side of the surface, the broken lines for flow on the 

bottom side of the surface. 

selected values of R, are collected in Table 1. The 
Boussinesq result, the convectional linear approxima- 
tion for the density difference in the buoyancy force, is 
given in Table 3, part A. In Table 1, it is seen that P(0) 
=jzP’dn=-j$P’dq=-I,>O. These flows 
occur on the upper side of the surface, and extend up 
into the lower range of local inside buoyancy force 
reversal, R < 0.08. Similarly, P(0) = I, for bottom side 
flows, down into the range of local outside buoyancy 
force reversal, R > 0.288. 

For flow without buoyancy force reversals, 

calculations were made over a range from R = - 16 to 
+ 16, outside the region 0 < R < l/2. The Boussinesq 
buoyancy force approximation is retrieved from the 
present formulation by choosing q = 1. The distri- 
butions of the tangential component of the filtration 
velocity, f’, and temperature, 4 for R = + 1, f 2, + 8, 
together with the Boussinesq approximation, as q = 1, 

are shown in Figs. 2 and 3. It appears there that u,,, for 
Boussinesq flows is less than that ofcold water. It is not, 
in terms of physical velocity u = v[(Rc~,)“~/x]f’(q). 
Taking specific values, t,, = 12S”C and t, = 12”C, and 

R=-16,16.-4.4,-l.l.Bousslnesq 

FIG. 3. Distribution of the temperature variation, 4(q), for selected values of R outside the buoyancy reversal 
region. The solid lines are for flow on the upper side of surface., for R < 0, the broken lines for flow on the 

bottom side of the surface, for R > 0. 
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I.2 

II 

IO 

9 

8 
Boussinesq.R=l.-1.4,-4.16.-16 

7 

-P 
6 

5 

4 

3 

2 

I 

FIG. 4. Motion pressure distribution across the boundary region, for selected values ofR outside the buoyancy 
reversal region. The solid lines are for flow on the upper side of the surface, the broken lines for flow on the 

bottom side of the surface. 

R=-16, 

u,,(cold water) 

u,,,(Boussinesq) 

= (;crO-LJ-r) 
‘I3 f’(0) cold water 

f’(O) Boussinesq = 0.977. 

Figure 4 is the resulting motion pressure distribution 
for R = + 1, +4, + 16. It is seen that, for increasing JR(, 
the curves for positive and negative values of R merge. 

The most surprising result is seen in the variation of 

the vertical component of velocity component, v. 
Distributions for R = + 1, k2, +4, together with 
Boussinesq approximation, are shown in Fig. 5; this 
component is negative near the surface-i.e. an out- 
flow. Also, there is a qC, for each particular value of R, at 
which the slope changes from negative to positive. 
These distributions are of the same form when plotted 
against y, since v depends linearly on y at any x. Recall 
from (33) 

a(-4 -_ 
ay -- a1(~;)1’3 b(x) [f’ + 2qf”] (42) 

6 

r 

R=-4.4.-2,2.-l,l.Boussinesq 

-2 
0 I 2 3 4 5 6 7 8 9 IO 

7 

FIG. 5. Distribution of the normal velocity component, f - 2nf’, for selected values of R outside the buoyancy 
reversal region. The solid lines are for flow on the upper side of the surface, the broken lines for flow on 

the bottom side of the surface. 
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FIG. 6. Boundary-layer buoyancy-induced flow characteristics 
about a horizontal surface, for R outside of the buoyancy force 

reversal region. 

For any particular value of Ra, change in sign of 
f’ + 2qf” indicates the intervening extremum in u seen 
in Fig. 5. 

Figure 6 diagrams the general flow characteristics 
implied by these results, as follows. In the inner region, 
that is, for q < q,, &lay > 0. Then, from continuity, 
au/ax < 0. That is, the tangential velocity component u 
is decreasing downstream. This generates flow away 
from the surface. On the other hand, in the outer region 
flow, for q > nc, the tangential velocity component is 
increasing downstream; the normal flow component v 
then is inward, towards the surface. This is an ordinary 
entrainment effect. 

In fact, this unusual phenomenon, of ‘inner region 
normal velocity component reversal’, is common to all 
buoyancy-induced flows adjacent to horizontal 
surfaces. However, it was not mentioned in previous 
studies. It arises both in Newtonian and porous media 
flow, for both the isothermal and the uniform heat flux 
boundary conditions. As a specific example, consider a 
heated surface and the buoyancy force being largest 

near the surface. This has the tendency to drive the fluid 
upward. However, any incoming entrainment is a 
downward flow. Moreover, a favorable motion 
pressure gradient drives tangential flow downstream. 
Combining all of these effects, the u velocity distribution 
will always appear as Fig. 5. Taking specific values for 
cold water, t, = 6°C and t, = 5”C, and R = - 1. Also, 
fort, = 6°C and r = 5.33”C, R = - 2. Since the density 
of pure water at 1 atm reaches its maximum at 4°C the 
buoyancy force B = g(p, - p), is larger near the surface 
for R = - 1 than that of R = - 2. Therefore, qc would be 
larger for R = - 1 than for R = -2. This explains the 
increasing qc in Fig. 5. 

Consider next flows with internal buoyancy force 
reversals, as in the range 0 < R < l/2. Calculations 
were made inward from each of these R boundaries 
toward any flow reversal or inversion conditions. 
No convergent solutions were found in the range of 
0.08 < R < 0.288. Again, the transport results for 
0 < R < 0.08 and 0.288 < R < 0.5 are in Table 1. It is 
seen that P(0) = I, drastically decreases and changes 
sign near R = 0.30, where the gap begins. 

However, coming in from the lower side in R, P(0) = 

I, remains large as the gap is approached. On the other 
hand, the entrainment velocity parameter f(a) 
decreases substantially across the range 0 < R < 0.08, 
while over the region 0.288 < R < 0.5, f(co) had still 
retained a comparatively large value. Thus, the 
characteristics of these two subregions are very 
different. 

Figure 7 shows distributions of the local buoyancy 
force W(q). Though it is not easily inferred in this figure, 
W(q) does change from positive to slightly negative 
across the thermal region in the range 0 < R < 0.08, an 
outside buoyancy force reversal in upflow. For the 
other range, 0.288 < R < 0.5, W changes sign adjacent 
to the wall, an inside buoyancy force reversal. 

-0 4 I I I I I I I I I I 

0 2 3 4 5 6 7 8 9 IO 

I) 

FIG. 7. Distribution of the local buoyancy force, w across the thermal diffusion region. The solid lines are for 
flow on the upper side of the surface, the broken lines for the flow on the bottom side of the surface. 
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FIG. 8. Distribution of the tangential component of velocity, f’, inside the buoyancy reversal region. The solid 
lines are for the flow on the upper side of the surface, the broken lines for the flow on the bottom side of the 

surface. 

Theresulting variations ofthe tangential component 
ofvelocityqfor variousvaIu~of~,areplottedin Fig. 8. 
The calculations detected incipient inside flow reversal 
as f’(0) first became negative at about R = 0.30. Below 
this value this bidirectional effect increased. On the 
other hand, very weak outside flow reversal was found 
over the whole range 0 < R g 0.08. Clearly, the 
boundary region formulation is not reliable for 
bidirectional flow. The above conditions for incipient 
flow reversal are indications ofthe formal limits ofsuch 
calculations. 

The temperature distributions, for selected values of 
R, are shown in Fig. 9. The normal component 
distributions u are plotted in Fig. 10. It is seen that the 
behavior with outside flow reversal, that is, for 0 < 
R < 0.08, is now even more complicated than without 
reversal, in Fig. 5. In the inner part ofthe layer, a region 
of normal velocity component reversal again arises, 0 
changes from outward to inward. However, the 
magnitude of B again decreases at large q. On the other 
hand, with inside flow reversal, u again decreases 
toward the asymptotic value, 

0.6 ff=0.5,0,08,0.4,0.05,0,0.301.0.288 

0 / 2 3 4 5 6 7 8 

FIG. 9. Distribution of temperature variation, 4(q), inside the buoyancy reversal region. The solid lines are for 
the flow on the upper side of the surface, the broken lines for the flow on the bottom side of the surface. 

s?n 29:4-l! 
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R=0.00.0.05.0,0.5.0.4,0.301.0200 
-2 

-4 
0 5 IO 15 20 25 

? 
FIG. 10. Distribution of the normal velocity component inside the buoyancy reversal region. The solid lines are 
for the flow on the upper side of the surface, the broken lines for the flow on the bottom side of the surface. 

6. A UNIFORM SURFACE 

HEAT CONDITION 

For this imposed condition, equation (27) indicates 
that the surface temperature increases downstream as 
d = to-t, = Nx” where n = 2/(q+ 3) = 0.408, for 
q(0, 1). For similarity R must be constant downstream. 
Therefore, in equation (lo), since t, = t, = d(x), t, 
must be taken as t, and R = 0. Then W = W(q) cc 
Grn -p), the buoyancy force, is always up everywhere 
across the boundary region, since p < pm. These flows, 

with upward buoyancy, may be of boundary region 
form only on the upper side of a surface, for positive 
heat flux. Again, the resulting transport characteristics, 
as in equation (26)-(32) for n = 0, are calculated for 
q = 1.894816 to be 

Q(x) = x 
qx,g a X(4-lY(q+3) = Xo.183 

_+, Y) K X-2/(4+3) = x-0.4o8 

@) oc $(q+ 3) = .p.408 

e oc xkl+lMq+3) = xo.591 

M@) E +I/(4+3) = X0.774. 

Since both R and Pr now no longer appear in the 
formulation, equations (37)-(40), only one calculation 
covers all physical circumstances. The resulting 
entrainment velocity, heat transfer and buoyancy force 
parameters are collected in Table 2. Conventional 

Table 2. Uniform flux n = 2/(q + 3) = 0.408593, R = 0, that is 
t, = t, 

R f(a) 9’(O) P(O) 
0 1.07551 - 0.64062 -0.82141 0.8:;41 

results, for q = 1 in this formulation, have been 
calculated by Cheng [lo], that is, for n = 2/(q+3) = 
l/2 and the transport parameters are given in Table 3. 
The two solutions, for q = 1.894816 and for q = 1, for 
the distributions of the tangential velocity component, 
the temperature and the normal velocity component 
are plotted in Figs. 11-13, respectively. 

In Tables 2 and 3, the Boussinesq result (q = 1) has a 
larger magnitude of I, than cold water (q = 1.894816). 
Therefore, the velocity level is seen in Fig. 11 to be larger 
for Boussinesq than that of cold water. Consequently, 
Boussinesq has a higher heat transfer rate d’(O) than 
cold water as shown in Fig. 12. Again, an inner region of 
normal velocity component reversal arises, for both the 
cold water and conventional Boussinesq flows, as 
shown in Fig. 13. 

7. CONCLUSIONS 

These transport results apply for both isothermal 
and uniform flux surface conditions for flow adjacent to 
a horizontal surface submerged in porous medium 
saturated with cold water. Calculations extend over a 
wide range of R including conditions both outside and 
inside the buoyancy force reversal region, 0 < R < l/2. 
Solutions were found outside 0.08 < R < 0.288. 

Outside of 0 < R -=c l/2, it is seen that the velocity, 
pressure level and heat transfer rate increase as IR( 
increases. Also for increasing JRI, they tend to merge for 

Table 3. Conventional Boussinesq approximation results 

(A) Uniform temperature, n = 0 
2.81581 -0.43021 - 1.58362 1.58362 

(B) Uniform flux, n = l/2 
1.88534 -0.81646 - 1.14110 1.14110 
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FIG. 11. Distribution of the tangential component ofvelocityJ, for constant heat flux surface in cold water and 
conventional Boussinesq approximation. 

621 

FIG. 12. Distribution of the temperature variation, 4(q), for constant heat flux surface in cold water and 
conventional Boussinesq approximation. 

Cold water, Roussinesq 

0 I 2 3 4 5 6 7 8 9 IO-II 12 

FIG. 13. Distribution of the normal velocity component, f- 2/‘~, for constant heat flux surface in cold water 
and conventional Boussinesq approximation. 
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positive and negative values of R. Moreover, the value 

of flE> at which the slope of the normal velocity 
component changes from negative to positive, 
increases as (R( increases. 

Dramatic differences in transport arise between con- 
ditions of inside and outside buoyancy force rever- 
sal. Incipient flow reversal arises inside near the surface 
at around R = 0.30. However, incipient outside local 
flow reversal occurs over the whole range of 0 < R < 

0.08. The total buoyancy force across the boundary 
region, I,, decreases substantially as R decreases from 
0.5t00.288,atthegap.However,ZWremainslargeasRis 
increased from 0 to 0.08. The surface heat transfer rate 
decreases drastically as the nonconvergent gap is 
approached both from R = 0 and R = 0.5. 

An inner region reversal of normal velocity 
component was found. Also from Table 1, the lowest 
surface heat transfer rate is only half of that at both 
R = 0 and R = 0.5. No applicable experimental data 
are available to compare with our results. 
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MOUVEMENT D’ORIGINE THERMIQUE ADJACENT A UNE SURFACE HORIZONTALE 
SUBMERGEE DANS UN MILIEU POREUX SATURE D’EAU FROIDE 

R&sum&On prtsente le calcul de la couche limite laminaire induite par les forces d’Archimtde pour un 
6coulement adjacent g des surfaces horizontales froides ou chaudes immergbes dans un milieu poreux sature 
d’eau froide avec un bventuel extremum de densit& Les rbsultats montrent pour la premibre fois l’existence d’un 
renversement de composante normale de vitesse. On montre que cela se produit pour tous les Bcoulements de 
convection naturelle adjacents B des surfaces horizontales. On note que le nombre de Prandtl Pr = v/a, 
n’apparait pas comme un parametre additionnel dans cette formulation. Un parambtre de tempbature R 
exprimela relation entre les temp&ratures imposCes to et t, et la tempirature t, de l’extremum. Des calculs sont 
conduits B la fois pour des conditions de renversement. Pour une surface isotherme, les resultats pour 
0 < R < 0,08 et 0,288 < 5 < 0,5 incluent les r6gions de renversement. Les caractbristiques de ces deux sous- 
rigions sont diffkrentes. Des tabulations dttailltes des param&res de transport sont donnbes pour les deux 
typesdeconditionsauxlimites.Cesnouveauxri?sultatssontcomparbsavecceuxr6sultantsdeI’approximation 

conventionnelle de Boussinesq. 
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AUFTRIEBSINDUZIERTE STROMUNG ENTLANG EINER HORIZONTALEN 
OBERFLACHE IN EINEM POROSEN, MIT KALTEM WASSER GESATTIGTEN MEDIUM 

Zusammenfassung-Es werden Transportberechnungen fiir die laminare Grenzschicht einer auftriebs- 
induzierten Striimung entlang beheizter oder gekiihlter horizontaler Oberflbhen durchgefiihrt. Die 
Oberflachen befinden sich in einem porosen Medium, das mit kaltem Wasser geslttigt ist, wobei ein 
Dichteextremum auftreten kann. Die Ergebnisse zeigen zum ersten Ma1 die Existenz eines inneren Gebietes 
mit Umkehr der senkrechten Geschwindigkeitskomponente. Es zeigt sich, da8 dies fur alle natiirlichen 
Konvektionsstriimungen entlang horizontaler Oberflachen auftritt. Bemerkenswert ist, da8 die Prandtl-Zahl 
Pr = v/a, nicht als zusatzlicher Parameter in dieser Beschreibung erscheint. Ein Temperaturparameter R 
beschreibt den Zusammenhang zwischen den aufgeprigten Temperaturen t, und tm und der 
Extremtemperatur t,. Es werden Rechnungen fur eine isotherme Oberfliiche und fur eine konstante 
Warmestromdichte tiber einen weiten Bereich von R durchgefiihrt, die Umkehrbedingungen fur die 
Auftriebskraft enthalten. Bei der isothermen Oberfllche ergeben sich Gebiete der Umkehr der Auftriebskraft 
fur 0 < R Q 0,08 und 0,288 < R d 0,5. Die Eigenschaften dieser beiden Unterregionen sind verschieden. 
Genaue Tabellen der Transportparameter sind sowohl fiir die isotherme Oberfllche als such fur konstante 
Wiirmestromdichte enthalten. Diese Ergebnisse werden mit denen nach der konventionellen Boussinesq- 

Approximation verglichen. 

TEqEHHE, BbI3BAHHOE IIOA-bEMHOti CHJIOti, B03HHKAIOIQEE Y 
1-OPB30HTAjIbHOn HOBEPXHOCTA, HAXOJDHIIEtiCx B IIOPHCTOfi CPEAE, 

HACbIIIIEHHOn XOJIOAHOti BOAOR 

AtmoTaunn-IIpeAcTaBneHbI pavieTbr npoAeccos nepeHoca wn nahmHapHor0 norpaHwiHor0 TeSeHm, 

BbI3BaHHOT0 ~OJ&CMHOfi CW,Oii, OKOn HarpeTOir HnEI OXnaXUJeHHOii I'OpH30HTaJlbHOti nOBepXHOCTB, 

nOMeWeHHOii BHaCbltAeHHyIOXOAOAHOii BOAOfi nOp&iCTyIoC~Ay,BKOTOpOfiMOlKeTBO3HWKHyTb 3ICCTpe- 

MaJIbHOe 3HaYeHUe nJlOTH0CTH.C nOMOI4blO lIOJI)“iCHHbIX pe3yJlbTaTOB BllCpBbIC tIOKa3aHO CylWCTBOBa- 

HHe "BHyTpeHHei-i JOHbI o6paueHwn HalTpaBJIeHHK HOpMiUbHOfi KOMllOHeHTbl CKOpOCTH". OTMeYeHO 

TaKKCe,STO 310 RB,,PeTCII O6UHM CBOiiCTBOM BCeX eCTeCTBeHHOKOHBeKTHBHbIX Te'leHd y rOpki30HTaJlb- 

HbIX nOBepXHOCTek nOKa3aHO,'iTO B AaHHOfi nOCTaHOBKe 'iHCJI0 npaHATJIK P?'= V/al He nORBJlleTCR B 

Ka~eCTBeAOnOnHuTenbHOrOnapaMeTpa.TeMnepaTypH~InapaMeTp R BblpaxcaeTCensbsaAaHHbrXTeM- 
nepaTyp t, W t, C 3KCTpeMUlbHbIM 3Ha'ieHHeM TeMnepaTypbl t,. npO%ACHbl PWiCTbl &Wl Si3OTCpMW 

WCKHX YCJIOBHii U OAHOpOAHOrO nOTOKa Ha nOBepXHOCTH B IIIkipOKOM AHana30He H3MeHeHHR R, 
BKJllOYaII yCJIOBEiR o6paueHm IIOA~eMHOti CWJIbI. &IS H30TCpMWSeCKOii IlOBCpXHOCTLi ~3)‘JtbTaTbi IICpC- 

Hoca npw 0~ R 5 0,08 ~0,288 5 R 50,s ywTblBamTo6AacTsi o6pa~eHwnnoA%eMHoiicmbt.O6Hapy- 

meH0 HecoBnaAeHwe xapaKTepwcTwK ~TWX AB~X o6nacTek CocTaBneHbI noApo6HbIe ra6nnnbi 
napaMeTpoB nepeHoca KaK Am ~30TephtmecK08 noBepxrrome,TaK B Am omopoAHor0 noToKa. Ha& 

AeHHbIC pC3ynbTaTbI ~aBHHBW,TCK C pC3yJlbTaTaMH, lIOJIy’IeHHMM&i B npn6nmxenuu EyCCHHeCKa. 


