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Abstract—Transport calculations are given for laminar boundary-layer, buoyancy-induced flow adjacent to
heated or cooled horizontal surfaces submerged in a porous medium saturated with cold water wherein a
density extremum may arise. The results demonstrate for the first time the existence of ‘inner region of normal
velocity component reversal’. Thisis also shown to arise for all natural convection flows adjacent to horizontal
surfaces. It is noted that the Prandtl number Pr = v/a, does not appear as an additional parameter in this
formulation. A temperature parameter R expresses the relation between imposed temperatures t, and ¢, and
the extremum temperature t,. Calculations are made for both the isothermal and uniform flux surface
conditions, over a wide range of R, including buoyancy force reversal conditions. For an isothermal surface, the
transport results for 0 < R < 0.08 and 0.288 < R £ 0.5 include buoyancy force reversal regions. The
characteristics of these two subregions are found to be different. Detailed tabulations of transport parameters
areincluded for both the isothermal and uniform flux surface conditions. These new results are compared with

those resulting from the conventional Boussinesq buoyancy force approximation.

1. INTRODUCTION

PURE WATER at 1 atm has a density extremum at about
4°C. This is due to a balance of the competing density-
controlling mechanism of hydrogen bonding and
molecular thermal motion. This anomalous density
behavior has far reaching effects in buoyancy-driven
transport. It also complicates analysis since the second
Boussinesq approximation, that the fluid density p
varies linearly with temperature, can no longer be
applied.

The transport complexity will be briefly reviewed
here first for the flow adjacent to a vertical surface.
Consider, for example, a vertical surface at a uniform
temperature ¢, = 8°C, in a quiescent pure water
ambient ¢, = 2°C. Near the surface, the fluid is less
dense than the ambient and the buoyancy force is
upward. However, since extremum occurs at about
4°C, the fluid in the outer portion of the thermal
transport region is more dense than the ambient.
Consequently, the buoyancy force then is downward.
Thus, an inside buoyancy force reversal occurs across
the thermal diffusion region. An inside flow reversal
may result. That is, inner flow may be up, with the outer
flow down. With changing values of toand ¢, inversion
may arise. That is, the direction of net mass flow may
reverse.

In the past, a very compact relation for density—
temperature dependence in cold water was not
available. A recent equation giveninref. [ 1] contains 35
temperature terms ; another recent and vastly simpler
equation [2] is of comparable accuracy. The latter
expression contains only one temperature term. This
simplicity of the temperature dependence leads to
similarity solutions of boundary-layer flows.
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There are many recent studies of buoyancy-driven
motion in cold water, using this new density equation.
Transport from isothermal and constant heat flux
horizontal surfaces was calculated in ref. {3]. Qureshi
and Gebhart [4] computed similarity solutions for the
flow adjacent to a vertical, uniform heat flux surface in
ambient water at t,. Carey et al. [5] considered
buoyancy-induced flow adjacent to a vertical,
isothermal surface in pure water ambient. Mollendorf
et al. [6] treated axisymmetric and plane plume flow in
water at ¢,,. The perturbation analysis of Gebhart et al.
[7] extended the results of refs. [4] and [6] to ambient
water temperatures not equal to ¢,,. El-Henawy et al.
[8] found muitiple steady-state solutions for vertical,
buoyancy-induced flow conditions in cold, pure water.

In recent years, there has been a growing interest in
buoyancy-induced flow in fluid-saturated, porous
media due to concerns about geothermal deposits,
energy storage and insulation. Analysis is simpler than
that for Newtonian fluid transport and the permissible
number of boundary conditions is less. Formulation
usually, therefore, allows slip at bounding surfaces,
where a no-slip condition is taken for Newtonian fluids.

There has been considerable analysis and experiment
concerning buoyant transport in porous media. Cheng
and his co-workers [9-11] determined a series of
similarity solutions. In this analysis, the Boussinesq
approximation, that the fluid density p varies linearly
with temperature, was invoked. Sun et al. [12] applied
linear stability analysis using a cubic polynomial
density—temperature relationship. Yen [13] measured
the effect of a density inversion on free convective heat
transferin a porous layer heated from below. Ramilison
and Gebhart [14] examined the possible similarity
solutions for vertical, buoyancy-induced flow in a
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a,b,c,d defined in equations (9), (11), (12),
(13), respectively
b,, c,,d, denotes differentiation with respect
to x
buoyancy force, g(p, — p)
normal component of buoyancy force
specific heat
similarity streamfunction variable defined
in equation (12)
denotes fluid in equation (3)
modified Grashof number, 5(Gr,/5)'/®
Grashof number
acceleration of gravity
total buoyancy force, equation (26)
permeability of porous medium
effective thermal conductivity of saturated
porous medium
thermal conductivity of solid
thermal conductivity of fluid
mass flow per unit width of surface
local momentum flux
constant in d(x) = Nx"
pressure
pn  hydrostatic pressure
Pw mMotion pressure
P, ambient pressure
P non-dimensional pressure, equation (13)
Pr Prandtl number
total local convected energy
exponent in density equation (4)
parameter defined in equation (10)
a, local Rayleigh number, equation (21)
s salinity
t temperature
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NOMENCLATURE

t, temperature at which maximum density
occurs for a given salinity and pressure
surface temperature

ambient temperature

Darcy velocity in x-direction

Darcy velocity in y-direction

vector velocity

local buoyancy force defined in equation (8)
coordinate parallel to the surface
coordinate vertical to the surface.

‘gxg<¢§8"’o‘"

Greek symbols

o  coefficient in the density equation (4)

o, thermal diffusivity ratio of matrix
conductivity to fluid heat capacity

B coefficient of thermal expansion

0  boundary-layer thickness

n  non-dimensional distance in boundary
region

. the position of # where vertical component
velocity changes from outward to inward

N Vvalue of 5 at the edge of boundary region

4 dynamic viscosity

v kinematic viscosity
density

pm maximum density

P density of ambient fluid

p, reference quantity of density

¢ normalized temperature, (¢, —t,)/(to—t)

¥  streamfunction

¢  porosity.

Superscript
" denotes differentiation with respect to 7.

porous medium saturated with cold water both for
d(x) = ty—t,, in power law or exponential relation
with respect to x. More recently, Gebhart et al.
[15] obtained multiple steady-state solutions for the
same kind of transient using two different numerical
codes, i.e. COLSYS and BOUNDS.

This study analyzes developing buoyancy-induced
transport adjacent to an extensive heated or cooled
horizontal surface embedded in a porous medium
saturated with cold water (see Fig. 1). There is no
buoyancy force component in the principal flow
direction. The flow is instead driven indirectly by a
buoyancy-generated pressure field. For B = B, away
from the surface, low pressure, with respect to p,, arises
in the temperature region next to the surface. If negative
pressure levels arise they will result in a negative
pressure gradient in the increasing x-direction. A
developing flow will thus be induced downstream. This
is an ‘indirect drive’, since buoyancy indirectly drives
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Fi1G. 1. Coordinate systems for the two transport conditions,
buoyancy B upward and downward. (a) Buoyancy effect
largely upward ; (b) buoyancy effect largely downward.
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the flow. It produces a pressure field which, in turn,
drives a relatively weak flow. Further downstream,
thermal instability eventually arises, due to unstable
stratification. Longitudinal vortices then may arise to
separate the flow. Such a mechanism is discussed by
Pera and Gebhart [16].

The following conventional assumptions simplify
the analysis:

1. Flow is sufficiently slow that the convecting fluid
and the porous matrix are in local thermo-
dynamic equilibrium.

2. The physical properties of the fluid and porous

matrix are uniform and isotropic.

Fluid remains in a single phase.

It is a fully saturated porous medium.

Darcy’s law is valid.

Density is assumed constant except in the

buoyancy force term.

7. Dufor and Sorét effects are negligible.

IS o

The density state equation used here is very accurate
for both pure and saline water to a pressure level of 1000
bars, to 20°C, and to 40°/,, salinity. The governing
equations for steady flow are:

Vv=0 )
K
=—(pg—Vp) 2
U
k
Vit = & 3
Y ' (prcp)f ( )

P = puls, p)[1—als, P) It —tu(s, PI*P]  (4)

where v is the Darcy velocity, 4 and ¢, are the viscosity
and specific heat of the convective fluid and p, is a
reference density, which will be p,,, in equation (4). Also,
K and k are, respectively, the permeability and effective
thermal conductivity of the saturated porous medium,
p and g are the fluid pressure and gravitational
acceleration, s is the salinity level of the water.

It is noted that the first Boussinesq approximation,
Ap/p « 1, is employed in writing the continuity
equation (1). The forms and values of the functions g, «,
Pm and t, are given in full detail in ref. [2].

2. ANALYSIS

The analysis treats a semi-infinite, horizontal,
impermeable surface embedded in a saturated porous
medium. No salinity diffusion is considered. The
buoyancy arises only due to thermal gradients. The
equations for steady, two-dimensional plane flow, with
constant properties 4 and K, from equations (1)}(3) are
then continuity, Darcy’s law and energy, as follows :

6u+6v_0 5
ox ' dy (
_ Kop, (6a)
= a

K[ op, @
v——[—ﬁ—ﬂ—pg] (6b)
u dy 0y
ot + o0 K 0t . %t (60)
“ox Ty T e oy Loy

InFig. 1, on-flowis on the upper side of the surface for
anupward buoyancy force B and on the bottom side for
B downwards. In equation (6¢c) «, results from the
matrix conductivity k = k(1 —¢&)+ k; where k, k;and ¢
represent thermal conductivity of solid, fluid and
porosity, respectively. This form arose in the evaluation
by Katto and Masuoka [17]. The static pressure p is
taken as the sum of the local hydrostatic pressure p, and
a motion pressure p,, and u and v are the downstream
and normal components of Darcy velocity. Equation
(7) below results from an order of magnitude analysis as
the boundary-layer approximation.

K|  0pm
0=—[ Sy +g(pw—p)] ™
: Y

The buoyancy force is determined from the density
relation, equation (4). In the present analysis, for pure
water at 1 bar, ¢(0, 1) = 1.894816

Po—P = 0P|t —tm|T =t o — L)
= apulto—t,1%¢—RI*—|R[%)
= 0pplto—t, "W ®
where ¢, is the surface temperature, ¢, is the ambient

temperature and W(x, y) is the local buoyancy force.
Taking

t—t,
B == ©)

tm—t
R=2 ® 1
to—to (10)
A transformation is sought in terms of a similarity
variable #n(x, y). The usual streamfunction ¥/(x, y) and
f(n) are defined following the notation of Gebhart [18]

n{x, y) = yb(x) (11
(x, y) = agc(x) f(n) (12)
P = a(x)P(n) (13

where u = ¥, v = —y, and 4, b, ¢ are transformation
functions to be determined. The transformation is
substituted into (5}«7) to determine the a(x), b(x), c(x)
and d(x), for which similarity will result. The resulting
equations in f, ¢ and P are

K anb, K a,

I+ u bea, I u o be = 4
. Pmdlto—t W

P = ~ (15)

¢+ f¢——f¢ 0. (16)

For similarity of results, all of the above coefficients
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in (14)~(16) must be constants or functions of 5 only.
This consideration leads to the following values of a(x),
b(x), c{x} and d{x).

a(x) = 2 0 (Ra (17
b(x) = Ral?/x (18)
e(x) = (Ra ' (19
d(x) = (20)
where
Ra, < KPublto—tal'x _ oKpugN? ..\ 1)

L Hay

Note that Ra, is always positive. In terms of f, P and ¢
the differential equations and boundary conditions
become

f’+"q;znp'+§(nq+1)1ﬂ=0 @2)
P'=W =[l¢-R*~|R]"] 23

5+ g npe =0 4

fO) = P(o) =(0)—1=(c0) =0.  (25)

Note that the above formulation is for flow over the
upper side of the surface. For flow on the bottom side of
the surface, P’ = — W. The total buoyancy force out
across the boundary region is

I - r W dy = r [6—RI~IR[D dn. (26)
O 43

This quantity is effective in indicating the net effect of
buoyancyin the flow and the flow vigor. In the results in
Table 1,1, > Ois associated with the flow on the upper
side of the surface and vice versa. Note that Pr = v/a,

Table 1. Calculated values for the isothermal surface
condition, n = 0, for ¢ = ¢{0, 1)

R S(e0) ¢0) P(0) 1,
—16 798224 122265 —12.82716 12.82716
-8 6.50388 —~0.99867 —8.58169 8.58169
—4 530932 081915 580418 5.80418
-2 434997 ~0.67717 —4.00481 4.00481
-1 358840 —0.56753 —2.85906 2.85906
~05 299631 048613 —2.14937 2.14937
0 1.73084 034181 —1.21021 1.21021
0.05 133584 -0.31326 —1.0839%4 1.08394
0.08 082297 029031 —1.00472 1.00472
0.288 209427 ~0.16919 0.10788 0.10788
0301 213112 020009 —002388  —0.02388
04 240963 —029639 051306 —0.51306
05 263381 034915 -0.83812 —0.83812
1 336983 048926 —1.91938 ~1.91938
2 421613 —062974 —330297  —3.30297
4 522711 —~0.7900% 527496  —5.274%
8 645335 -—0.98082 -8.18184 818184
16 795117 —~1.21168 —12.52490 —12.52490
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does not appear explicitly in the formulation, equation
(22}, (23) and (24).

Therole of temperature parameter Ris crucialin cold
water transport, It expresses the effect of the extremum
behavior on the resulting flow. It is an indicator of the
relation between £, and ¢, and the extremum
temperature, ¢,. It also indicates the nature of the
buoyancy force B, or W. For large [R|, the imposed
system temperatures are far from the extremum
condition. On the other hand, consider ¢, = 0°C. Then
R = 1—t,/t,. For R = 0, t,, = 1, and the buoyancy
force is upward over the whole thermal layer,
configuration(a)in Fig. 1. However,forR = 1,¢, = 1.,
The buoyancy force is then downwards, configuration
{b). In fact, for R < 0, W > 0 everywhere and the on-
flow is on the upper side of a surface. For R > 0.5,
W < Qeverywhere and on-flow is on the bottom side of
a surface.

Intheregion0 < R < 0.5, Wchanges sign across the
boundary region. As a result, it is not initially known
what subrange of R results in a developing boundary-
layer flow, either above or below the surface. The
computed results, in Table 1, indicate that I, >0
approaches zero as R increases from R =0. As R
decreases from R = 1/2, I, < Oagain approaches zero.
These are the upper and lower side flows, respectively,
in Fig. 1.

3. REASONABLE SOLUTIONS

The f{ollowing basic transport quantities are
calculated in terms of similarity variables to determine
the imposed temperature conditions, d(x) = Nx",
under which physically realistic solutions result.

ox) = fm pucy{t—1,) dy o cd
0

X j‘w ' dn o xEt3HIB - oy
o

u(x, y) = o bef’ oc be oo x(2ng —1)/3 (28)
8(x) = — oc ; oc x(@-may? (29
X

x[z“’;"q Wq+§(nq+1) j de} (30)
”

n‘z=f pudy = a,pcflooyoc x®at V3 (31
(3
M= vauzdy poe zb.( (f'y dn oc x™ (32)

—v{X, ) =y, =, [c‘fn + fe, ]

ai (Rax) r
3x

(f=2f"noc x™=B3, (33)
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For a heated or cooled surface, the total local
convected energy |Q{x)| should increase or at least
remain constant downstream, as for a line source or
sink attheleading edge. Thus, from(27),n = — 1/{g+3).
From (29), the condition §(0) = 0 leads to n < 2/q.

Since there is no buoyancy force component in the
direction of flow, the flow is completely driven by a
pressure field. That s, the favorable pressure gradientin
the x-direction, dp,,/dx < 0 is the only driving force.
Consider equation (30) for R <0, Wand I, > 0. With
the restriction of — 1/{g +3) < n < 2/g,itcanbeshown
that the quantity in the bracket of (30} is positive, and
since Ra, > 0. Therefore, dp,,/0x < 0. Thus, on-flow
arises above the upper side of the surface. On the other
hand, I, < 0for R > 0.5, and developing flow arises on
the bottom side.

4. PARTICULAR TRANSPORT CIRCUMSTANCES

There are many important applications to consider.
Solutions are given here for only two kinds of
temperature conditions. One is an isothermal surface
conditionin an unstratified ambient medium. Thus Ris
a constant, # = 0, and the equations are

¢ 2 y 2 —
fr=3nP+3P=0 (34)
1
$"+3 /¢ =0 (35)

P’ =[|¢—R[*—|RI]
flow on the upper side of surface (36a)

= —[l¢—RI*— R[]
flow on the bottom side of surface (36b)
J0) = 1-¢{0) = ¢p(c0) = P(x0) =0.  (37)

The other condition is that of the bounding surface
dissipating a uniform heat flux g”. The @{x)is constant
and n = 2/{g+3) from (27). Since ¢, varies with x, so
would R in equation (10), unless t, =1t,. Then
similarity would be lost in equation (23). Therefore, the
condition R = 0, or t, = ¢, is chosen. The resulting
formulation is:

G+3)f ~29P +2{g+ 1)P =0 (38)
(@+3)¢"+@+ DI ~2f$=0 (39
P = ¢ (40)

S0 = 1=(0) = ¢(c0) = Pcc) = 0.  (41)

Some of the particular transport characteristics with
an isothermal surface condition are examined next.
Bothuand dp,,/0x are seen in equations (28) and (30) to
be singular at the leading edge, x = 0. The boundary
region mass flow, per unit width of surface, m, is
proportional to x!/3, The boundary-layer thickness
8(x} varies as x*/>. However, local momentum flux M is
independent of x. It is recalled that for both vertical and
horizontal surfaces embedded in either a Newtonian
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fluid or porous medium ambient, the normal velocity
component v is singular at the leading edge. For
example, for a horizontal surface in a Newtonian
ambient, —v =(G/5x)(3f—2f"%), the asymptotic solu-
tion of f can be shown to approach zero exponen-
tially at large 5. However, —va f{oo)x™™ /5
Thus, for n = 0, v is singular at the leading edge.

Cheng [10] has discarded the possibility of the
existence of buovancy-induced, boundary-layer flow
adjacent to anisothermalsurface embedded ina porous
medium, It was argued that the singularity in the
tangential velocity at the leading edge was in-
admissably unreasonable. However, the momentum
flux M is bounded in (32). Therefore, the singularity of
u(x, y) at the leading edge is not obviously worse than
that in o(x, y) there.

A consequence of u{x, y)being unbounded at x = Qs
that the downstream flow behavior, although quite
reasonable, is unusual and very different from most
boundary region ftransport. This is the only
configuration in which u{x, y} is unbounded at the
leading edge, for both horizontal and vertical surfaces
embedded in either a Newtonian fluid or a saturated,
porous medium. Finally, the boundary-layer ap-
proximation assumes that the gradient in physical
quantities are small in the downstream of x-direction,
when compared with those with y. It may beshown that
/v = O(Ra, ). Thus the solutions are more accuracte
at increasing Ra,, as is usually found in boundary
region flows.

5. NUMERICAL RESULTS FOR AN
ISOTHERMAL SURFACE CONDITION

Solutions for the isothermal and uniform heat flux
surfaceconditions are presented separately. Isothermal
results are considered first. Equations (34)}(36) are a
fourth-order system. The accompanying four boun-
dary conditions are designated at two locations, at the
surface, n = 0, and outside the boundary region, n — 0.
For computations, # must be taken to be finite. Then
(34)36), with (37), were solved by a predictor—
corrector shooting method. The local step size is
automatically adjusted to maintain a prescribed
accuracy, while integrating from = 0 to a chosen .
Initial guesses for ¢'(0) and P(0) are successively refined
to satisfy the distant boundary cenditions, Eventual
values of ¢(o0) and P(oo} differ from zero by less than
1078, In order to ensure convergence of the values of
¢'{0) f{o0), P(0) and I, to 1075, the value of n,, was
sometimes increased to as much as 55.

Computations were made over alargerangeof Rand
into the range of buoyancy forcereversal, 0 < R < 1/2,
from both sides, as far as possible. A gap of non-
convergence remained. It was more and more difficult
to obtain a convergence further in from each edge
R =0 and 1/2. Flow reversal near the surface first
occurred for R decreasing, at around 0.30. The
remaining gap was found to be 0.08 < R < 0.288.

The calculated values of f{w), ¢'(0), P(0)and I, for
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Boussinesq, #=1,-1,2,-2,8,-8

Fi1G. 2. Distribution of the tangential component of velocity, f', for selected values of R outside the buoyancy
reversal region. The solid lines are for flow on the upper side of the surface, the broken lines for flow on the
bottom side of the surface.

selected values of R, are collected in Table 1. The
Boussinesq result, the convectional linear approxima-
tion for the density difference in the buoyancy force, is
given in Table 3, part A. In Table 1, it is seen that P(0)
=[QPdp=— [ Pdp=—I,>0. These flows
occur on the upper side of the surface, and extend up
into the lower range of local inside buoyancy force
reversal, R < 0.08. Similarly, P(0) = I, for bottom side
flows, down into the range of local outside buoyancy
force reversal, R > 0.288.

For flow without buoyancy force reversals,

calculations were made over a range from R = —16to
+ 16, outside the region 0 < R < 1/2. The Boussinesq
buoyancy force approximation is retrieved from the
present formulation by choosing g = 1. The distri-
butions of the tangential component of the filtration
velocity, f’, and temperature, ¢ for R = +1, +2, +8,
together with the Boussinesq approximation,as g = 1,
are shownin Figs. 2 and 3. It appears there that u,,, for
Boussinesq flows is less than that of cold water. Itis not,
in terms of physical velocity u = v[(Ra,)'3/x]f (n).
Taking specific values, t, = 12.5°Cand ¢, = 12°C,and

R=-16,16,-4,4,-1,1, Boussinesq

F1G. 3. Distribution of the temperature variation, ¢ (), for selected values of R outside the buoyancy reversal
region. The solid lines are for flow on the upper side of surface, for R < 0, the broken lines for flow on the
bottom side of the surface, for R > 0.
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Boussinesq, R=1,-1,4,-4,16,-16

FiG. 4. Motion pressure distribution across the boundary region, for selected values of R outside the buoyancy
reversal region. The solid lines are for flow on the upper side of the surface, the broken lines for flow on the
bottom side of the surface.

R=-16,
u,,,(cold water)
Unmax(Boussinesq)
_ g(to-—-tw)"_‘ 23 £(0) cold vYater 0977,
B J’(0) Boussinesq

Figure 4 is the resulting motion pressure distribution
for R = +1, +4, +16.Itis seen that, for increasing |R|,
the curves for positive and negative values of R merge.

The most surprising result is seen in the variation of

f-2nf’

the vertical component of velocity component, v.
Distributions for R =+1, +2, +4, together with
Boussinesq approximation, are shown in Fig. 5; this
component is negative near the surface—i.e. an out-
flow. Also, there is a , for each particular value of R, at
which the slope changes from negative to positive.
These distributions are of the same form when plotted
against y, since v depends linearly on y at any x. Recall
from (33)

o(—v) _ (Ra)'

bx)Lf' +2n/"]1  (42)

dy 3x

R=-4,4,-2,2,-1,1, Boussinesq

5 6 7 8 9 10

F1G. 5. Distribution of the normal velocity component, f —2n f*, for selected values of R outside the buoyancy
reversal region. The solid lines are for flow on the upper side of the surface, the broken lines for flow on
the bottom side of the surface.
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F16. 6. Boundary-layer buoyancy-induced flow characteristics
about a horizontal surface, for R outside of the buoyancy force
reversal region.

For any particular value of Ra, change in sign of
f"+2nf" indicates the intervening extremum in v seen
in Fig. 5.

Figure 6 diagrams the general flow characteristics
implied by these results, as follows. In the inner region,
that is, for # < 5., dv/dy > 0. Then, from continuity,
0u/0x < 0. Thatis, the tangential velocity component u
is decreasing downstream. This generates flow away
from the surface. On the other hand, in the outer region
flow, for n > n., the tangential velocity component is
increasing downstream ; the normal flow component v
then is inward, towards the surface. This is an ordinary
entrainment effect.

In fact, this unusual phenomenon, of ‘inner region
normal velocity component reversal’, is common to all
buoyancy-induced flows adjacent to horizontal
surfaces. However, it was not mentioned in previous
studies. It arises both in Newtonian and porous media
flow, for both the isothermal and the uniform heat flux
boundary conditions. As a specific example, consider a
heated surface and the buoyancy force being largest

0.8

0.6
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near the surface. This has the tendency to drive the fluid
upward. However, any incoming entrainment is a
downward flow. Moreover, a favorable motion
pressure gradient drives tangential flow downstream.
Combining all of these effects, the v velocity distribution
will always appear as Fig. 5. Taking specific values for
cold water, t, = 6°Cand ¢, = 5°C,and R = —1. Also,
fort, = 6°Cand ¢ = 5.33°C, R = — 2. Since the density
of pure water at 1 atm reaches its maximum at 4°C, the
buoyancy force B = g(p., — p),islarger near the surface
for R = —1thanthatof R = — 2. Therefore, s, would be
larger for R = —1 than for R = —2. This explains the
increasing #, in Fig. 5.

Consider next flows with internal buoyancy force
reversals, as in the range 0 < R < 1/2. Calculations
were made inward from each of these R boundaries
toward any flow reversal or inversion conditions.
No convergent solutions were found in the range of
0.08 < R < 0.288. Again, the transport results for
0 <R <0.08and0.288 < R <0.5arein Table 1. Itis
seen that P(0) = I, drastically decreases and changes
sign near R = 0.30, where the gap begins.

However, coming in from the lower side in R, P(0) =
I, remains large as the gap is approached. On the other
hand, the entrainment velocity parameter f(c0)
decreases substantially across the range 0 < R < 0.08,
while over the region 0.288 < R < 0.5, f(cc) had still
retained a comparatively large value. Thus, the
characteristics of these two subregions are very
different.

Figure 7 shows distributions of the local buoyancy
force W(n). Though it is not easily inferred in this figure,
W(n) does change from positive to slightly negative
across the thermal region in the range 0 < R < 0.08,an
outside buoyancy force reversal in upflow. For the
other range, 0.288 < R < 0.5, W changes sign adjacent
to the wall, an inside buoyancy force reversal.

/£=05,04,0301,0.288,0.08,0.05,0

\~__‘/'
-0 a4 L ! I | 1 | I | 1 1
0] | 2 3 4 5 ) v 8 9 le}
n

F1G. 7. Distribution of the local buoyancy force, W, across the thermal diffusion region. The solid lines are for
flow on the upper side of the surface, the broken lines for the flow on the bottom side of the surface.
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FiG. 8. Distribution of the tangential component of velocity, /7, inside the buoyancy reversal region. The solid
lines are for the flow on the upper side of the surface, the broken lines for the flow on the bottom side of the
surface.

Theresulting variations of the tangential component
of velocity u, for various values of R, are plottedin Fig. 8.
The calculations detected incipient inside flow reversal
as f'(0) first became negative at about R = 0.30. Below
this value this bidirectional effect increased. On the
other hand, very weak outside flow reversal was found
over the whole range 0 < R <£0.08. Clearly, the
boundary region formulation is not reliable for
bidirectional flow. The above conditions for incipient
flow reversal are indications of the formal limits of such
calculations.

The temperature distributions, for selected values of
R, are shown in Fig. 9. The normal component
distributions v are plotted in Fig. 10. It is seen that the
behavior with outside flow reversal, that is, for 0 <
R <€ 0.08, is now even more complicated than without
reversal, in Fig. 5. In the inner part of the layer, a region
of normal velocity component reversal again arises, v
changes from outward to inward. However, the
magnitude of v again decreases at large 5. On the other
hand, with inside flow reversal, v again decreases
toward the asymptotic value.

F1G. 9. Distribution of temperature variation, ¢(r), inside the buoyancy reversal region. The solid lines are for
the flow on the upper side of the surface, the broken lines for the flow on the bottom side of the surface.
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F1G. 10. Distribution of the normal velocity component inside the buoyancy reversal region. The solid lines are
for the flow on the upper side of the surface, the broken lines for the flow on the bottom side of the surface.

6. A UNIFORM SURFACE
HEAT CONDITION

For this imposed condition, equation (27) indicates
that the surface temperature increases downstream as
d=1ty—t,=Nx" where n=2/(q+3)=0.408, for
¢(0, 1). For similarity R must be constant downstream.
Therefore, in equation (10), since t, =t = d(x), t,,
must be taken as t,, and R =0. Then W= W(n)
(p — p), the buoyancy force, is always up everywhere
across the boundary region, since p < p,. These flows,
with upward buoyancy, may be of boundary region
form only on the upper side of a surface, for positive
heat flux. Again, the resulting transport characteristics,
as in equation (26)}32) for n =0, are calculated for
q = 1.894816 to be

Q(x) oc x

u(x’ y) o x(q—l)/(q+3) = x0.183

—v(x, y) oc x~21a*3) — x~0.408

5()6) o x2/(q+ 3) — x0.408

"o x(q+1)/(q+ 3) x0.591

M(x) o x2q/(q+ 3) - x0.774.

Since both R and Pr now no longer appear in the
formulation, equations (37)~(40), only one calculation
covers all physical circumstances. The resulting
entrainment velocity, heat transfer and buoyancy force
parameters are collected in Table 2. Conventional

Table 2. Uniform flux n = 2/(g + 3) = 0.408593, R = 0, that is

too = tl’l’l
R S(0) ¢'(0) P(0) 1,
0 1.07551 —0.64062  ~0.82141 0.82141

results, for g =1 in this formulation, have been
calculated by Cheng [10], that is, for n =2/(g+3) =
1/2 and the transport parameters are given in Table 3.
The two solutions, for ¢ = 1.894816 and for g = 1, for
the distributions of the tangential velocity component,
the temperature and the normal velocity component
are plotted in Figs. 11-13, respectively.

In Tables 2 and 3, the Boussinesq result (g = 1) hasa
larger magnitude of I,, than cold water (g = 1.894816).
Therefore, the velocity levelisseenin Fig. 11 tobelarger
for Boussinesq than that of cold water. Consequently,
Boussinesq has a higher heat transfer rate ¢'(0) than
cold water as shown in Fig. 12. Again, an inner region of
normal velocity component reversal arises, for both the
cold water and conventional Boussinesq flows, as
shown in Fig. 13.

7. CONCLUSIONS

These transport results apply for both isothermal
and uniform flux surface conditions for flow adjacent to
a horizontal surface submerged in porous medium
saturated with cold water. Calculations extend over a
wide range of R including conditions both outside and
inside the buoyancy force reversal region,0 < R < 1/2.
Solutions were found outside 0.08 < R < 0.288.

Outside of 0 < R < 1/2, it is seen that the velocity,
pressure level and heat transfer rate increase as |R|
increases. Also for increasing | R|, they tend to merge for

Table 3. Conventional Boussinesq approximation results

(A) Uniform temperature, n = 0

281581 —0.43021 —1.58362  1.58362
(B) Uniform flux, n = 1/2
1.88534 —0.81646 —1.14110  1.14110
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Fi1G. 11. Distribution of the tangential component of velocity, ', for constant heat flux surface in cold water and
conventional Boussinesq approximation.
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FiG. 12. Distribution of the temperature variation, ¢(x), for constant heat flux surface in cold water and
conventional Boussinesq approximation.
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F1G. 13. Distribution of the normal velocity component, f — 2 f', for constant heat flux surface in cold water
and conventional Boussinesq approximation,
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positive and negative values of R. Moreover, the value
of 5., at which the slope of the normal velocity
component changes from negative to positive,
increases as [R] increases.

Dramatic differences in transport arise between con-
ditions of inside and outside buoyancy force rever-
sal. Incipient flow reversal arises inside near the surface
at around R = 0.30. However, incipient outside local
flow reversal occurs over the whole range of 0 < R <
0.08. The total buoyancy force across the boundary
region, I, decreases substantially as R decreases from
0.5t00.288, at the gap. However, I, remains large as R is
increased from 0 to 0.08. The surface heat transfer rate
decreases drastically as the nonconvergent gap is
approached both from R = 0 and R = 0.5.

An inner region reversal of normal velocity
component was found. Also from Table 1, the lowest
surface heat transfer rate is only half of that at both
R =0 and R = 0.5. No applicable experimental data
are available to compare with our results.
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MOUVEMENT D’ORIGINE THERMIQUE ADJACENT A UNE SURFACE HORIZONTALE
SUBMERGEE DANS UN MILIEU POREUX SATURE D’EAU FROIDE

Résumé—On présente le calcul de la couche limite laminaire induite par les forces d’Archiméde pour un
écoulement adjacent a des surfaces horizontales froides ou chaudes immergées dans un milieu poreux saturé
d’eaufroide avec un éventuel extremum de densité. Les résultats montrent pour la premiére fois ’existence d'un
renversement de composante normale de vitesse. On montre que cela se produit pour tous les écoulements de
convection naturelle adjacents a des surfaces horizontales. On note que le nombre de Prandtl Pr = v/a,
n’apparait pas comme un paramétre additionnel dans cette formulation. Un paramétre de température R
exprimelarelation entre les températures imposées ty et ¢, et 1a température t,, de'extremum. Des calculs sont
conduits a la fois pour des conditions de renversement. Pour une surface isotherme, les résultats pour
0 < R <0,08et0,288 < 5 < 0,5 incluent les régions de renversement. Les caractéristiques de ces deux sous-
régions sont différentes. Des tabulations détaillées des paramétres de transport sont données pour les deux
typesde conditions aux limites. Ces nouveaux résultats sont comparés avecceux résultants de’approximation
conventionnelle de Boussinesq.



Buoyancy-induced flow

AUFTRIEBSINDUZIERTE STROMUNG ENTLANG EINER HORIZONTALEN
OBERFLACHE IN EINEM POROSEN, MIT KALTEM WASSER GESATTIGTEN MEDIUM

Zusammenfassung—Es werden Transportberechnungen fiir die laminare Grenzschicht einer auftriebs-
induzierten Stromung entlang beheizter oder gekiihlter horizontaler Oberflichen durchgefiihrt. Die
Oberflichen befinden sich in einem pordsen Medium, das mit kaltem Wasser gesittigt ist, wobei ein
Dichteextremum auftreten kann. Die Ergebnisse zeigen zum ersten Mal die Existenz eines inneren Gebietes
mit Umkehr der senkrechten Geschwindigkeitskomponente. Es zeigt sich, daB dies fiir alle natiirlichen
Konvektionsstromungen entlang horizontaler Oberflichen auftritt. Bemerkenswert ist, daB die Prandtl-Zahl
Pr = v/a, nicht als zusétzlicher Parameter in dieser Beschreibung erscheint. Ein Temperaturparameter R
beschreibt den Zusammenhang zwischen den aufgeprigten Temperaturen ¢, und t, und der
Extremtemperatur t,,. Es werden Rechnungen fiir eine isotherme Oberfliche und fiir eine konstante
Wairmestromdichte iber einen weiten Bereich von R durchgefiihrt, die Umkehrbedingungen fir die
Auftriebskraft enthalten. Bei der isothermen Oberflidche ergeben sich Gebiete der Umkehr der Auftriebskraft
fir 0 < R < 0,08 und 0,288 < R < 0,5. Die Eigenschaften dieser beiden Unterregionen sind verschieden.
Genaue Tabellen der Transportparameter sind sowohl fiir die isotherme Oberfléche als auch fiir konstante
Wirmestromdichte enthalten. Diese Ergebnisse werden mit denen nach der konventionellen Boussinesq-
Approximation verglichen.

TEUEHHUE, BLI3BAHHOE ITOABEMHOM CUJION, BO3HUKAIOIIEE V
TOPU3OHTAJIBHOM TTOBEPXHOCTHU, HAXOASIMENCS B IIOPUCTO! CPEJE,
HACBIIIEHHOY XOJIOAHOM BOAOM

Anvorauus—IIpeacTaBieHbl pacyeThl NPOLECCOB MEPEHOCA UIA JAMHHAPHOTO HMOTPaHHYHOIO TEYEHHH,
BBI3BAHHOTO NMOABEMHOHN CHJIOH, OKOJIO HarpeToifi MM OXNaXICHHOH TOPH3OHTANbHOM IOBEPXHOCTH,
NOMELIEHHOM B HACHILIEHHYIO XOJIOOHOH BOAOH MOPHCTYIO Cpedy, B KOTOPOH MOXET BOZHHKHYTE 3KCTpe-
MaJibHOE 3Ha4€HMe IIOTHOCTU. C NOMOIILIO MOJMYYEHHBIX PE3YJIbTATOB BIIEPBBIE MOKA3aHO CYILECTBOBA-
HHe “BHYTpeHHeil 30HBI OOpallleHHA HanpaBJIEHHA HOPMaJbHOW KOMIIOHEHTHI CKOpocTH”, OTMeYeHo
TaKxe, 4TO 3TO sABJsAETCA 0OLINM CBOHCTBOM BCEX €CTECTBEHHOKOHBEKTHBHBLIX TEUEHMil Y TOPH3OHTAJIb-
HbIX noBepxHocTeit. [Toka3aHo, 4To B AaHHOM mocTaHoBKe 4HcHo IlpasnTns Pr = v/a, He nosBaseTcs B
KauyecTBe JOMOJIHUTEIBHOTO apaMeTpa. TeMnepaTypHslil napaMeTp R BEIpaxaeT CBA3bL 3aJaHHBIX TEM-
nepaTyp to H t,, ¢ 3KCTPEMaJIbHBIM 3HAYEHHEM TEMIEpaTyphl ¢, . IIpoBeeHbI pacyeThl Mt U3OTEPMH-
YECKHX YCIIOBHH M OJHOPORHOro IOTOKAa HAa MOBEPXHOCTH B IIMPOKOM [Hama3oHe H3MeHeHHd R,
BKJIlOYas yCJIOBHSA oOpallleHHs moabeMHOM cHutbl. JIj1A H30TepMHAYECKO# MOBEPXHOCTH PE3YJILTATHI NEPE-
Hoca npu 0 < R < 0,08 n 0,288 < R < 0,5 yunteiBatoT o6nactu obpaineHns noxbeMHOR cuiisl. OGHapy-
KEHO HeCOBMAJeHHE XapaKTepHCTHK 3THX nOByx obmacteff. CocTaBieHbl NoapoOHblE TabnHLbI
[IapaMeTpoB MEpeHoca Kak A8 H30TEPMHYECKOH NOBEPXHOCTH, TaK M IS OMHOPOAHOro noroka. Haii-
ZIEHHBIE PE3YJIbTaThl CPABHHBAIOTCA C Pe3yJIbTATAMH, TOJIyYCHHKIME B prbimkeHnn Byccunecka.
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